A New Synthetic Method for N-Substituted Selenoamides

Hua Rong ZHAO^{*}

Department of Chemistry, Zhejiang University, Hangzhou 310027

Abstract: Benzotriazole, aldehydes and primary selenoamides react together with elimination of water to form 1:1:1 adducts which are reduced smoothly by NaBH₄ to give the N-substituted selenoamides in good yield.

Keywords: Selenoamides, benzotriazole, aldehydes, synthesis.

Selenoamides are versatile precursors for preparation of selenium-nitrogen hetercycles^{1,2}. However the synthetic application of selenoamides has been greatly restricted due to the difficulty in preparation. There are only a few known methods for the synthesis of N-substituted selenoamides³⁻⁶ such as the reaction of phosphorous pentaselenides with amines, the addition of secondary amines to alkyneselenols. However, those methods are not general and covenient. Perhaps the best known method for N-substituted selenoamides is the exchange reaction of the resulting primary selenoamide with primary or secondary amines⁷.

We have reported that the primary selenoamides could be synthesized by the reaction of aryl nitries with sodium hydrogen selenide in ethanol conveniently⁸. We now report a new synthesis for N-substituted selenoamides from the primary selenoamides (**Scheme 1**). A variety aldehydes reacted with the primary selenoanides, in the presence of benzotriazole to yield adducts **5** readily by loss of water. The 1:1:1 adducts were reduced by NaBH₄ in refluxed THF to give the expected N-substituted selenoamides **6**. The structure of compounds **5a-f** and **6a-e** were confirmed by IR and ¹H NMR and elemental analysis.

General procedure

Under nitrogen, the mixture of benzotriazole 1 (3 mmol), benzoaldehyde 2 (3 mmol) and selenobenzamide 4 (3 mmol) in dry toluene (30 mL) was refluxed for 4-30 h. Then toluene was removed *in vacuo* and the residue was dissolved in dichloromethane. The solution was washed with water (40 mL \times 3) and 10% Na₂CO₃ (20 mL), dried over MgSO₄ and concentrated. The residue was chromatographed with a silica gel plate

^{*}E-mail: zxjzhr@mail.hz.zj.cn

Hua Rong ZHAO

Scheme 1

(cyclohexane-ethyl ether as an eluent) and to give pure adduct 5a~f in 30-70% yield.

Adduct 5 (1 mmol) was dissolved in dry THF (30 mL). Solid sodium borohydride (1.2 mmol) was added in one portion to the stirred solution. The solution was refluxed for 2 h under N₂. Then the reaction mixture was washed with 10% Na₂CO₃ (20 mL) and water (20 mL \times 2), dried over MgSO₄ and concentrated. The residue was separated with a silica gel plate (cyclohexane-ethyl ether as an eluent) to give pure solid product **6a~e** in 96-98% yield.

The spectral data and physical chemical consistants of compounds **5e-f** and **6a-e** are as follows.

5a: mp 91-93°C. orange solid, yield 30%. IR (KBr): 3195, 1500 cm⁻¹. ¹H NMR (CDCl₃): $\delta_{\rm H}$ 0.87-1.07 (t, 3H, *J*=6Hz, CH₃), 1.22-1.74 (m, 2H, CH₂), 2.26 (s, 3H, *m*-CH₃), 2.36-2.62 (q, 2H, *J*=7Hz, CH₂), 7.00-7.88 (m, 9H, ArH, CH), 9.14 (d, 1H, *J*=9Hz, NH). C₁₈H₂₀N₄Se (Calcd: C, 58.23; H, 5.43; N, 15.09; Found: C, 58.48; H, 5.54; N, 14.99).

5b: mp 124-126°C. orange solid, yield 60%. IR (KBr): 3195, 1530 cm⁻¹. ¹H NMR (CDCl₃): $\delta_{\rm H}$ 0.82-1.67 (m, 15H, CH₃(CH₂)₆), 2.45-2.84 (m, 2H, CH₂), 7.17-8.03 (m, 10H, ArH, CH), 9.26 (d, 1H, *J*=9Hz, NH). C₂₂H₂₈N₄Se (Calcd: C, 61.83; H, 6.60; N, 13.11; Found: C, 62.04; H, 6.67; N, 12.97).

5c: mp 99-101°C. orange solid, yield 60%. IR (KBr): 3192, 1548 cm⁻¹. ¹H NMR (CDCl₃): $\delta_{\rm H}$ 0.82-1.89 (m, 15H, CH₃(CH₂)₆), 2.26 (s, 3H, *m*-CH₃), 2.48-2.64 (m, 2H, CH₂), 7.00-7.92 (m, 9H, ArH, CH), 9.39 (d, 1H, *J*=9Hz, NH). C₂₃H₃₀N₄Se (Calcd: C, 62.58; H, 6.85; N, 12.69; Found: C, 62.80; H, 7.02; N, 12.53).

5d: mp 132-134°C. orange solid, yield 70%. IR (KBr): 3190, 1510 cm⁻¹. ¹H NMR (CDCl₃): $\delta_{\rm H}$ 0.82-1.73 (m, 15H, CH₃(CH₂)₆), 2.31 (s, 3H, *p*-CH₃), 2.49-2.67 (m, 2H, CH₂), 7.08-7.98 (m, 9H, ArH, CH), 9.24 (d, 1H, *J*=9Hz, NH). C₂₃H₃₀N₄Se (Calcd: C,

404 A New Synthetic Method for N-substituted Selenoamides

62.58; H, 6.85; N, 12.69; Found: C, 62.81; H, 6.97; N, 12.57).

5e: mp 132-133°C. orange solid, yield 50%. IR (KBr): 3197, 1546 cm⁻¹. ¹H NMR (CDCl₃): $\delta_{\rm H}$ 0.73-1.68 (m, 17H, CH₃(CH₂)₇), 2.12 (s, 3H, *m*-CH₃), 2.44-2.59 (m, 2H, CH₂), 6.97-7.85 (m, 9H, ArH, CH), 9.14 (d, 1H, *J*=8.5Hz, NH). C₂₄H₃₂N₄Se (Calcd: C, 63.29; H, 7.08; N, 12.30; Found: C, 63.38; H, 7.21; N, 12.12).

5f: mp 126-127°C. orange solid, yield 65%. IR (KBr): 3193, 1510 cm⁻¹. ¹H NMR (CDCl₃): $\delta_{\rm H}$ 0.89-1.84 (m, 17H, CH₃(CH₂)₇), 2.31 (s, 3H, *p*-CH₃), 2.50-2.77 (m, 2H, CH₂), 7.02-8.01 (m, 9H, ArH, CH), 9.78 (d, 1H, *J*=9Hz, NH). C₂₄H₃₂N₄Se (Calcd: C, 63.29; H, 7.08; N, 12.30; Found: C, 63.46; H, 7.23; N, 12.48).

6a: orange oil (lit.,⁴ oil), yield 98%. IR (KBr): 3180, 1530 cm⁻¹. ¹H NMR (CDCl₃): $\delta_{\rm H}$ 0.84 (t, 3H, *J*=6Hz, CH₃), 1.20-1.90 (m, 4H, (CH₂)₂), 3.53 (q, 2H, *J*=7Hz, CH₂), 6.70-7.70 (m, 5H, ArH), 8.40 (br, 1H, NH). C₁₁H₁₅NSe (Calcd: C, 55.00; H, 6.29; N, 5.83; Found: C, 55.08; H, 6.35; N, 5.90).

6b: orange oil, yield 96%. IR (KBr): 3210, 1540 cm⁻¹. ¹H NMR (CDCl₃): $\delta_{\rm H}$ 0.80-1.92 (m, 17H, CH₃(CH₂)₇), 3.63-3.94 (q, 2H, *J*=7Hz, CH₂), 7.29-7.79 (m, 5H, ArH), 8.15 (br, 1H, NH). C₁₆H₂₅NSe (Calcd: C, 69.92; H, 8.12; N, 4.51; Found: C, 69.99; H, 8.23; N, 4.32).

6c: mp 43-44°C. orange solid, yield 98%. IR (KBr): 3215, 1535 cm⁻¹. ¹H NMR (CDCl₃): $\delta_{\rm H}$ 0.74-2.17 (m, 17H, CH₃(CH₂)₇), 2.26 (s, 3H, *m*-CH₃), 3.40-3.76 (q, 2H, *J*=7Hz, CH₂), 7.01-7.43 (m, 4H, ArH), 8.30 (br, 1H, NH). C₁₇H₂₇NSe (Calcd: C, 62.95; H, 8.39; N, 4.32; Found: C, 63.11; H, 8.46; N, 4.23).

6d: mp 33-34°C. orange solid, yield 97%. IR (KBr): 3210, 1540 cm⁻¹. ¹H NMR (CDCl₃): $\delta_{\rm H}$ 0.79-1.73 (m, 19H, CH₃(CH₂)₈), 3.63-3.98 (q, 2H, *J*=7Hz, CH₂), 7.23-7.80 (m, 5H, ArH), 8.10 (br, 1H, NH). C₁₇H₂₇NSe (Calcd: C, 62.95; H, 8.39; N, 4.32; Found: C, 63.13; H, 8.50; N, 4.25).

6e: mp 40-41°C. orange solid, yield 98%. IR (KBr): 3210, 1540 cm⁻¹. ¹H NMR (CDCl₃): $\delta_{\rm H}$ 0.66-2.27 (m, 19H, CH₃(CH₂)₈), 2.32 (s, 3H, *m*-CH₃), 3.36-3.66 (q, 2H, *J*=6Hz, CH₂), 6.90-7.33 (m, 5H, ArH), 8.01 (br, 1H, NH). C₁₈H₂₉NSe (Calcd: C, 63.89; H, 8.64; N, 4.14; Found: C, 64.02; H, 8.78; N, 4.06).

References

- 1. V. I. Cohen, Synthesis, 1979, 66.
- 2. K. Burger, R. Ottlinger, *Tetrahedron Lett.*, **1978**, 973.
- 3. K. A. Jensen, P. H. Nielson, Acta Chem. Scand., 1966, 20, 597.
- 4. F. Malek-Yazdi, M. Yalpani, Synthesis, 1977, 328.
- 5. T. Murai, T. Ezaka, S. Kato, Bull. Chem. Soc. Jpn., 1998, 71, 1193.
- A. Orgwa, J. I. Miyake, N. Kambe, S. Murai, N. Sonoda, Bull. Chem. Soc. Jpn., 1985, 58, 1448.
- 7. M. D. Ruan, P. F. Zhang, Y. Tao, W. Q. Fan, Synth. Commun., 1996, 26 (14), 2617.
- 8. H. R. Zhao, M. D. Ruan, X. J. Zhou, W. Q. Fan, Synth. Commun., 1994, 24 (12), 1761.

Received 27 July, 2001