A New Synthetic Method for N-Substituted Selenoamides

Hua Rong ZHAO*
Department of Chemistry, Zhejiang University, Hangzhou 310027

Abstract

Benzotriazole, aldehydes and primary selenoamides react together with elimination of water to form 1:1:1 adducts which are reduced smoothly by NaBH_{4} to give the N -substituted selenoamides in good yield.

Keywords: Selenoamides, benzotriazole, aldehydes, synthesis.

Selenoamides are versatile precursors for preparation of selenium-nitrogen hetercycles ${ }^{1,2}$. However the synthetic application of selenoamides has been greatly restricted due to the difficulty in preparation. There are only a few known methods for the synthesis of N -substituted selenoamides ${ }^{3-6}$ such as the reaction of phosphorous pentaselenides with amines, the addition of secondary amines to alkyneselenols. However, those methods are not general and covenient. Perhaps the best known method for N -substituted selenoamides is the exchange reaction of the resulting primary selenoamide with primary or secondary amines ${ }^{7}$.

We have reported that the primary selenoamides could be synthesized by the reaction of aryl nitries with sodium hydrogen selenide in ethanol conveniently ${ }^{8}$. We now report a new synthesis for N -substituted selenoamides from the primary selenoamides (Scheme 1). A variety aldehydes reacted with the primary selenoanides, in the presence of benzotriazole to yield adducts $\mathbf{5}$ readily by loss of water. The 1:1:1 adducts were reduced by NaBH_{4} in refluxed THF to give the expected N -substituted selenoamides 6. The structure of compounds 5a-f and 6a-e were confirmed by IR and ${ }^{1} \mathrm{H}$ NMR and elemental analysis.

General procedure

Under nitrogen, the mixture of benzotriazole $1(3 \mathrm{mmol})$, benzoaldehyde $2(3 \mathrm{mmol})$ and selenobenzamide $4(3 \mathrm{mmol})$ in dry toluene (30 mL) was refluxed for $4-30 \mathrm{~h}$. Then toluene was removed in vacuo and the residue was dissolved in dichloromethane. The solution was washed with water ($40 \mathrm{~mL} \times 3$) and $10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}(20 \mathrm{~mL})$, dried over MgSO_{4} and concentrated. The residue was chromatographed with a silica gel plate

[^0](cyclohexane-ethyl ether as an eluent) and to give pure adduct $\mathbf{5 a \sim f}$ in $30-70 \%$ yield.

Scheme 1

	R_{1}	R_{2}
$\mathbf{5 a}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	$m-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$
$\mathbf{5 b}$	$n-\mathrm{C}_{8} \mathrm{H}_{17}$	$\mathrm{C}_{6} \mathrm{H}_{5}$
5c	$n-\mathrm{C}_{8} \mathrm{H}_{17}$	$m-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$
$\mathbf{5 d}$	$n-\mathrm{C}_{8} \mathrm{H}_{17}$	$p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$
5e	$n-\mathrm{C}_{6} \mathrm{H}_{19}$	$m-\mathrm{CH}_{3} \mathrm{C}_{3} \mathrm{H}_{4}$
5f	$n-\mathrm{C}_{9} \mathrm{H}_{19}$	$p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$
$\mathbf{6 a}$	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	$\mathrm{C}_{6} \mathrm{H}_{4}$
$\mathbf{6 b}$	$n-\mathrm{C}_{8} \mathrm{H}_{17}$	$\mathrm{C}_{6} \mathrm{H}_{5}$
6c	$n-\mathrm{C}_{8} \mathrm{H}_{17}$	$m-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$
$\mathbf{6 d}$	$n-\mathrm{C}_{9} \mathrm{H}_{17}$	$\mathrm{C}_{6} \mathrm{H}_{4}$
$\mathbf{6 e}$	$n-\mathrm{C}_{9} \mathrm{H}_{19}$	$m-\mathrm{CH}_{3} \mathrm{C} 6 \mathrm{H}_{4}$

Adduct 5 (1 mmol) was dissolved in dry THF (30 mL). Solid sodium borohydride (1.2 mmol) was added in one portion to the stirred solution. The solution was refluxed for 2 h under N_{2}. Then the reaction mixture was washed with $10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}(20 \mathrm{~mL})$ and water ($20 \mathrm{~mL} \times 2$), dried over MgSO_{4} and concentrated. The residue was separated with a silica gel plate (cyclohexane-ethyl ether as an eluent) to give pure solid product 6a~e in $96-98 \%$ yield.

The spectral data and physical chemical consistants of compounds $\mathbf{5 e}$-f and $\mathbf{6 a - e}$ are as follows.

5a: $\mathrm{mp} 91-93^{\circ} \mathrm{C}$. orange solid, yield 30%. IR (KBr): 3195, $1500 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 0.87-1.07\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.22-1.74\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.26\left(\mathrm{~s}, 3 \mathrm{H}, m-\mathrm{CH}_{3}\right)$, 2.36-2.62 (q, 2H, $J=7 \mathrm{~Hz}, \mathrm{CH}_{2}$), 7.00-7.88 (m, 9H, ArH, CH), 9.14 (d, $1 \mathrm{H}, J=9 \mathrm{~Hz}, \mathrm{NH}$). $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{Se}$ (Calcd: C, 58.23; H, 5.43; N, 15.09; Found: C, 58.48; H, 5.54; N, 14.99). 5b: mp $124-126^{\circ} \mathrm{C}$. orange solid, yield 60%. IR (KBr): 3195, $1530 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 0.82-1.67\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6}\right), 2.45-2.84\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.17-8.03(\mathrm{~m}, 10 \mathrm{H}$, ArH, CH), 9.26 (d, $1 \mathrm{H}, J=9 \mathrm{~Hz}, \mathrm{NH}) . \mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{Se}$ (Calcd: C, 61.83; H, 6.60; N, 13.11; Found: C, 62.04; H, 6.67; N, 12.97).
5c: mp $99-101^{\circ} \mathrm{C}$. orange solid, yield 60%. IR (KBr): 3192, $1548 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 0.82-1.89\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6}\right), 2.26\left(\mathrm{~s}, 3 \mathrm{H}, m-\mathrm{CH}_{3}\right), 2.48-2.64(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), 7.00-7.92 (m, 9H, ArH, CH), 9.39 (d, $\left.1 \mathrm{H}, J=9 \mathrm{~Hz}, \mathrm{NH}\right) . \mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{Se}$ (Calcd: C, 62.58; H, 6.85; N, 12.69; Found: C, 62.80; H, 7.02; N, 12.53).

5d: mp $132-134^{\circ} \mathrm{C}$. orange solid, yield 70%. IR (KBr): 3190, $1510 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 0.82-1.73\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6}\right), 2.31\left(\mathrm{~s}, 3 \mathrm{H}, p-\mathrm{CH}_{3}\right), 2.49-2.67(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), 7.08-7.98 (m, 9H, ArH, CH), $9.24(\mathrm{~d}, 1 \mathrm{H}, J=9 \mathrm{~Hz}, \mathrm{NH}) . \mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{Se}$ (Calcd: C,
62.58; H, 6.85; N, 12.69; Found: C, 62.81; H, 6.97; N, 12.57).

5e: mp $132-133^{\circ} \mathrm{C}$. orange solid, yield 50%. IR (KBr): $3197,1546 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 0.73-1.68\left(\mathrm{~m}, 17 \mathrm{H}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{7}\right), 2.12\left(\mathrm{~s}, 3 \mathrm{H}, m-\mathrm{CH}_{3}\right), 2.44-2.59(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), 6.97-7.85 (m, 9H, ArH, CH), $9.14(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{NH}) . \mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{Se}$ (Calcd: C, 63.29; H, 7.08; N, 12.30; Found: C, 63.38; H, 7.21; N, 12.12).

5f: mp $126-127^{\circ} \mathrm{C}$. orange solid, yield 65%. IR (KBr): 3193, $1510 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 0.89-1.84\left(\mathrm{~m}, 17 \mathrm{H}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{7}\right), 2.31\left(\mathrm{~s}, 3 \mathrm{H}, p-\mathrm{CH}_{3}\right), 2.50-2.77(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), 7.02-8.01 (m, $\left.9 \mathrm{H}, \mathrm{ArH}, \mathrm{CH}\right), 9.78$ (d, $\left.1 \mathrm{H}, J=9 \mathrm{~Hz}, \mathrm{NH}\right) . \mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{Se}$ (Calcd: C, 63.29; H, 7.08; N, 12.30; Found: C, 63.46; H, 7.23; N, 12.48).

6a: orange oil (lit., ${ }^{4}$ oil), yield 98%. IR (KBr): $3180,1530 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}}$ $0.84\left(\mathrm{t}, 3 \mathrm{H}, J=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.20-1.90\left(\mathrm{~m}, 4 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{2}\right), 3.53\left(\mathrm{q}, 2 \mathrm{H}, J=7 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, 6.70-7.70 (m, 5H, ArH), 8.40 (br, 1H, NH). $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NSe}$ (Calcd: C, 55.00; H, 6.29; N, 5.83; Found: C, 55.08 ; H, 6.35 ; N, 5.90).

6b: orange oil, yield 96%. IR (KBr): $3210,1540 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 0.80-1.92$ $\left(\mathrm{m}, 17 \mathrm{H}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{7}\right), 3.63-3.94\left(\mathrm{q}, 2 \mathrm{H}, J=7 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.29-7.79(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 8.15(\mathrm{br}$, $1 \mathrm{H}, \mathrm{NH}$). $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NSe}$ (Calcd: C, 69.92; H, 8.12; N, 4.51; Found: C, 69.99; H, 8.23; N, 4.32).

6c: $\mathrm{mp} 43-44^{\circ} \mathrm{C}$. orange solid, yield 98%. IR (KBr): 3215, $1535 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 0.74-2.17\left(\mathrm{~m}, 17 \mathrm{H}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{7}\right), 2.26\left(\mathrm{~s}, 3 \mathrm{H}, m-\mathrm{CH}_{3}\right), 3.40-3.76(\mathrm{q}, 2 \mathrm{H}$, $J=7 \mathrm{~Hz}, \mathrm{CH}_{2}$), 7.01-7.43 (m, 4H, ArH), 8.30 (br, $1 \mathrm{H}, \mathrm{NH}$). $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NSe}$ (Calcd: C, 62.95; H, 8.39; N, 4.32; Found: C, 63.11; H, 8.46; N, 4.23).
6d: mp $33-34^{\circ} \mathrm{C}$. orange solid, yield 97%. IR (KBr): $3210,1540 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 0.79-1.73\left(\mathrm{~m}, 19 \mathrm{H}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{8}\right), 3.63-3.98\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.23-7.80$ (m, 5H, ArH), 8.10 (br, 1H, NH). $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NSe}$ (Calcd: C, 62.95 ; H, 8.39; N, 4.32; Found: C, 63.13; H, 8.50; N, 4.25).
6e: $\mathrm{mp} 40-41^{\circ} \mathrm{C}$. orange solid, yield 98%. IR (KBr): $3210,1540 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta_{\mathrm{H}} 0.66-2.27\left(\mathrm{~m}, 19 \mathrm{H}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{8}\right), 2.32\left(\mathrm{~s}, 3 \mathrm{H}, m-\mathrm{CH}_{3}\right), 3.36-3.66\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, 6.90-7.33 (m, 5H, ArH), 8.01 (br, 1H, NH). $\mathrm{C}_{18} \mathrm{H}_{29}$ NSe (Calcd: C, 63.89; H, 8.64; N, 4.14; Found: C, 64.02; H, 8.78; N, 4.06).

References

1. V. I. Cohen, Synthesis, 1979, 66.
2. K. Burger, R. Ottlinger, Tetrahedron Lett., 1978, 973.
3. K. A. Jensen, P. H. Nielson, Acta Chem. Scand., 1966, 20, 597.
4. F. Malek-Yazdi, M. Yalpani, Synthesis, 1977, 328.
5. T. Murai, T. Ezaka, S. Kato, Bull. Chem. Soc. Jpn., 1998, 71, 1193.
6. A. Orgwa, J. I. Miyake, N. Kambe, S. Murai, N. Sonoda, Bull. Chem. Soc. Jpn., 1985, 58, 1448.
7. M. D. Ruan, P. F. Zhang, Y. Tao, W. Q. Fan, Synth. Commun., 1996, 26 (14), 2617.
8. H. R. Zhao, M. D. Ruan, X. J. Zhou, W. Q. Fan, Synth. Commun., 1994, 24 (12), 1761.

Received 27 July, 2001

[^0]: *E-mail: zxjzhr@mail.hz.zj.cn

